TCS KS4 Maths Curriculum #### KS4 | Exam Board: | Edexcel | |--------------------|---| | Course Title: | Mathematics GCSE | | QAN: | 601/4700/3 | | Examination dates: | 3 papers (foundation or Higher) May to June TBC | ## Year 10 (Foundation) | | Outline of Course/SOW delivery | Key Assessments | Skill Development | |----------|---|-----------------------------------|---| | Autumn 1 | Shape and graphing Perimeter and area 3D forms and volume real life graphs straight line graphs | Topic tests and end of unit tests | See appendix for skill on department schemes of work. | | Autumn 2 | Shape and Space transformations: translations, rotations and reflections transformations: enlargements and combinations | Topic tests and end of unit tests | | | Spring 1 | Number and geometryratioproportion | Topic tests and end of unit tests | | | | right angled
triangles:
pythagoras and
trigonometry probability 1 | | | |----------|--|-----------------------------------|--| | Spring 2 | Data, shape and space probability 2 multiplicative reasoning plans and elevations | Topic tests and end of unit tests | | | Summer 1 | Geometry Algebra constructions, loci and bearings quadratic equations: expanding and factorising quadratic equations: graphs | Topic tests and end of unit tests | | | Summer 2 | Algebra and advanced number • circles, cylinders, cones and spheres • fractions and reciprocals • indices and standard form | End of year test | | ## Year 10 (Higher) | | Outline of Course/SOW delivery | Key Assessments (End point task) | Skill Development (How does this unit build on prior knowledge?) | |----------|--|-----------------------------------|---| | Autumn 1 | Shape and application of number Perimeter, area and circles 3D forms and volume, cylinders, cones and spheres accuracy and bounds | Topic tests and end of unit tests | See appendix for skill on department schemes of work. | | Autumn 2 | Shape and Space | Topic tests and end of | | |------------|---|-----------------------------------|--| | | | unit tests | | | | Advanced algebra | | | | | transformations | | | | | • constructions, loci | | | | | and bearings | | | | | solving quadratic | | | | | and simultaneous | | | | | equations | | | | Coming a 1 | • inequalities | Tania tasta and and of | | | Spring 1 | Number | Topic tests and end of unit tests | | | | probability | unit tests | | | | multiplicative | | | | | reasoning | | | | Spring 2 | Shape, space and | Topic tests and end of | | | | algebra | unit tests | | | | similarity and | | | | | congruence in 2D | | | | | and 3D | | | | | Graphs of | | | | | trigonometric | | | | | functions • further | | | | | trigonometry | | | | Summer 1 | Geometry | Topic tests and end of | | | Jannier 1 | Comeny | unit tests | | | | Algebra | | | | | quadratics, | | | | | expanding more | | | | | than two brackets, | | | | | sketching graphs of | | | | | circles cubes and | | | | | quadratics | | | | | circle theoremsCircle geometry | | | | | changing the | | | | | subject of formula | | | | | brackets more | | | | | complex closed | | | | | brackets, algebraic | | | | | fractions, solving | | | | | equations arising | | | | | from formula | | | | Summer 2 | Proof | End of year test | | | | | | | | • | vectors and | | | |---|-----------------|--|--| | | geometric proof | | | # Year 11 (Foundation) | | Outline of Course/SOW delivery | Key Assessments | Skill Development | |----------|---|---------------------|---| | Autumn 1 | Shape and spacesimilarity and congruence in 2Dvectors | unit tests | See appendix for skill on department schemes of work. | | Autumn 2 | Advanced algebra rearranging equations, graphs of cubic and reciprocal functions simultaneous equations | PPE | | | Spring 1 | Review of basic number and algebra work to ensure 'foundation blocks' are secure. | PPE | | | Spring 2 | Exam technique and practice Application of skill to specific exam work. Practising applying key skills to exam style questions. | regular past-papers | | | Summer 1 | | | | | Summer 2 | | | | # Year 11 (Higher) | | Outline of Course/SOW delivery | Key Assessments | Skill Development | |----------|--|---------------------|---| | Autumn 1 | Advanced algebra reciprocal and exponential graphs Gradients under graphs | unit tests | See appendix for skill on department schemes of work. | | Autumn 2 | Advanced algebradirect and inverse proportion | PPE | | | Spring 1 | Review of basic
number and algebra
work to ensure
'foundation blocks'
are secure. | PPE | | | Spring 2 | Exam technique and practice. Application of skill to specific exam work. Practising applying key skills to exam style questions. | regular past-papers | | | Summer 1 | | | | | Summer 2 | | | | #### Year 10 – Foundation | 8 | a | Perimeter and area | Autumn
Term Yr10 | Recognise
the formulae
for area of
sectors in a
circle. | Recognise
the formulae
for length of
arcs in a circle. | Find the
perimeters and
areas of
semicircles and
quarter circles | Use the formulae for the circumference and area of a circle, given the circumference or area, to calculate the radius or diameter | | |---|---|---------------------|---------------------|---|---|--|---|---| | | b | 3D forms and volume | | Calculate the
lengths and
areas given the
volumes in right
prisms | Find the
surface area of
simple shapes
(prisms) using
the formulae
for triangles
and rectangles,
and other
shapes | Calculate the
lengths, areas
and volumes in
cylinders | Calculate the
surface area of
right prisms | Calculate
volumes of
shapes made
from cuboids,
for lengths
given as whole
numbers | | 9 | | a | Real-life graphs | Interpret
gradient as rate
of change in
distance-time
and speed-time
graphs,
containers
emptying and
filling and unit
price graphs | Know that
the gradient of
a line is the
change in y
over change in
x. | Know that
the gradient of
a velocity time
graph
represents
acceleration | Interpret
distance-time
graphs and
calculate the
speed of
individual
sections, total
distance and
total time | Interpret the
gradient of a
straight line
graph as a rate
of change | | | | |----|---|---|--|---|---|--|--|---|--|--|---| | | , | b | Straight-line graphs | Find the
equation of a
straight-line
from its graph | Find the
equation of a
real-life straight
line graph that
goes through
the origin | Identify and interpret gradient and y intercept from an equation y=mx+c | Plot and
draw graphs of
straight lines
using a table of
values given in
the form ax +
by = c | Identify
parallel lines
from their
equations
where they
have to be
rearranged first | Without drawing the graphs, compare and contrast features of graphs such as y = 4x, y = 4x + 6, y = x + 6, y = x - 6 | Plot and
draw graphs of
straight lines
WITHOUT using
a table of
values (use
intercept and
gradient) | Write down
the equation of
a line parallel to
a given line | | 10 | 0 | a | Transformations I: translations, rotations and reflections | Describe a
transformation | Transform 2D shapes by a more complex combinations of rotations, reflections and translations, e.g. a reflection, followed by a rotation etc. | Translate a
shape using a
vector | Find the
centre of
rotation | | | | | | | b | Transformations II:
enlargements and
combinations | | Describe an enlargement using the scale factor and the centre of enlargement where the scale factor is a positive fraction | Enlarge a 2D
shape given a
negative scale
factor about a
centre (0,0) | Enlarge 2D
shapes, given a
fractional scale
factor with a
centre of
enlargement
other than (0,0) | | | | | |----|---|---|---------------------|--|---|--|--|---|--|--| | 11 | a | Ratio | | Use measures in ratio and proportion problems (currency conversion, rates of pay, best value) | Compare ratios by changing them to the form 1: m or m:1 | Interpret and
write ratios to
describe a
situation | Divide a
quantity into
more than two
parts in a given
ratio | Solve a ratio
problem in
context | Simplify a
ratio expressed
in different
units | Express a multiplicative relationship between two quantities as a ratio or a fraction | | | b | Proportion | | Set up
equations to
show direct
proportion | Use expressions of the form y α x | Use
expressions of
the form y α
1/x | Use algebraic
methods to
solve problems
involving
variables in
direct
proportion | | | | | 12 | | Right-angled triangles:
Pythagoras and trigonometry | Spring
Term Yr10 | Given the
coordinates of
points A and B,
calculate the
length of AB | Justify if a
triangle is right-
angled given its
three lengths | Know the
formula for
Pythagoras'
theorem and
use to find the
hypotenuse | Begin to use
the
trigonometric
ratios to find
the size of an
angle in a right-
angled triangle | Know the exact values of sin θ and \cos θ for θ = 0°, 30°, 45°, 60° and 90°; know the exact value of $\tan \theta$ for θ = 0°, 30°, 45° and 60° | Use and
apply
Pythagoras'
theorem to
solve problems
in 2D | Use the sine, cosine and tangent ratios to find the lengths of unknown sides in a right-angled triangle, using straight-forward algebraic manipulation, e.g. calculate the adjacent (using cosine), or the opposite (using sine or tangent ratios) | | | a | Probability I | | | | | | | _ | | |----|---|---|---------------------|---|---|---|---|---|--|--| | 13 | b | Probability II | | Understand
and use set
notation | Complete a probability tree diagram for dependent events understanding replacement and non replacement | Record
outcomes of
events in a
Venn Diagram | Draw a
frequency tree
based on given
information
and use this to
find probability
and expected
outcome | Understand
and use P(A
and B) = P(A) x
P(B) for
independent
events | | | | 14 | | Multiplicative reasoning | | Use
calculators to
explore
exponential
growth and
decay | Use graphs to calculate measures including unit price, average speed, distance, time, acceleration | Convert
between area
measures (e.g.
mm² to cm²,
cm² to m², and
vice versa) | Estimate
conversions | Extend to
simple
conversions of
compound
measures (e.g.
convert 2 m/s
to km/hr) | Understand
and use
compound
measures
(density, speed,
pressure) | Solve
problems
involving
compound
measures | | 15 | a | Plans and elevations | | | | • | | | | • | | 15 | b | Constructions, loci and bearings | | Construct
angles of 60°,
90°, 30°, 45° | Use straight edge and compass to construct the perpendicular from or to a point on a line segment | Mark on a
diagram the
position of
point B given its
bearing from
the point A | Produce
shapes and
paths by using
descriptions of
loci | Use accurate
drawing to
solve bearings
problems | Use straight
edge and
compasses to
construct a
triangle, given
right angle,
hypotenuse
and side (RHS) | | | 16 | a | Quadratic equations:
expanding and factorising | Summer
Term Yr10 | Solve simple
quadratic
equations
algebraically by
factorising | Factorise quadratic expressions of the form ax² + bx + c where a = 1, including the difference of two squares | | | | | | | | b | Quadratic equations: graphs | Construct a table of values, including negative values of x for a function such as y = ax ² | Identify and interpret roots, intercepts and turning points of a quadratic graph | Recognise a
graph which
represents a
quadratic
function | Identify the
line of
symmetry of a
quadratic graph | | | | | | |----|---|---------------------------------------|---|---|---|---|---|--|---|--|---| | 17 | | Circles, cylinders, cones and spheres | Calculate the
lengths and
areas given the
volumes in right
prisms | Find the
surface area of
simple shapes
(prisms) using
the formulae
for triangles
and rectangles,
and other
shapes | Calculate the
lengths, areas
and volumes in
cylinders | Calculate the
surface area of
right prisms | Calculate
volumes of
shapes made
from cuboids,
for lengths
given as whole
numbers | Recognise
the formulae
for area of
sectors in a
circle. | Recognise
the formulae
for length of
arcs in a circle. | Find the
perimeters and
areas of
semicircles and
quarter circles | Use the formulae for the circumference and area of a circle, given the circumference or area, to calculate the radius or diameter | | | a | Fractions and reciprocals | | | | | | | | | | | 18 | b | Indices and standard form | Use the index laws to include negative power answers and understand that these answers are smaller than 1 | Calculate
with roots
(surds - exact
values) | Use the laws
of indices to
multiply and
divide numbers
written in index
notation | Use the laws of indices for a number written in index form raised to a power e.g. (3²)⁴ | Interpret a
calculator
display using
standard form | Convert
between large
and small
numbers into
standard form
and vice-versa | Recognise
numbers
written in
standard form | Order
numbers
written in
standard index
form | | | | a | Perimeter, area and circles | | Recognise
the formulae
for area of
sectors in a
circle. | Recognise
the formulae
for length of
arcs in a circle. | Find the
perimeters
and areas of
semicircles
and quarter
circles | Use the formulae for the circumference and area of a circle, given the circumference or area, to calculate the radius or diameter | | | |---|---|--|-----------------------|--|--|---|---|--|-----------------------------| | 7 | b | 3D forms and volume, cylinders, cones and spheres Accuracy and bounds | _ Autumn Term
YR10 | Calculate
the lengths
and areas
given the
volumes in
right prisms | Find the
surface area of
simple shapes
(prisms) using
the formulae
for triangles
and
rectangles,
and other
shapes | Calculate
the lengths,
areas and
volumes in
cylinders | Calculate
the surface
area of right
prisms | Calculate volumes of
shapes made from
cuboids, for lengths
given as whole
numbers | | | | с | | | Identify the
upper and
lower bounds
of a
measurement | Calculate
the upper and
lower bounds
of 2-D
measurements
involving
addition e.g.
perimeter | Use inequality notation to specify simple error intervals due to truncation or rounding | | | | | 8 | a | Transformations | | Describe an enlargement using the scale factor and the centre of enlargement where the scale factor is a positive fraction | Describe a
transformation | Enlarge a
2D shape
given a
negative
scale factor
about a
centre (0,0) | Transform 2D shapes by a more complex combinations of rotations, reflections and translations, e.g. a reflection, followed by a rotation etc. | Enlarge 2D shapes, given a fractional scale factor with a centre of enlargement other than (0,0) | Find the centre of rotation | | | b | Constructions, loci and bearings | | Construct
angles of 60°,
90°, 30°, 45° | Use straight
edge and
compass to
construct the
perpendicular
from or to a
point on a line
segment | Mark on a
diagram the
position of
point B given
its bearing
from the
point A | Produce
shapes and
paths by using
descriptions
of loci | Use accurate
drawing to solve
bearings problems | Use straight edge
and compasses to
construct a triangle,
given right angle,
hypotenuse and side
(RHS) | |----|---|--|---------------------|---|--|---|---|--|--| | | a | Solving quadratic and simultaneous equations | | Solve
simple
quadratic
equations
algebraically
by factorising | Solve
simultaneous
equation,
linear/linear
simultaneous
equations,
where neither
or one
equation
needs
multiplying | Write
simultaneous
equations to
represent a
situation | Factorise quadratic expressions of the form ax² + bx + c where a = 1, including the difference of two squares | | | | 9 | b | Inequalities | | Solve more complex linear inequalities in one variable and represent the solution on a number line e.g6 < 2n+4 or -9 < 2n + 3 < 7 | Represent
the solution
set for
inequalities
using set
notation | Solve more complex linear inequalities in one variable where the unknown is on both sides of the inequality | | | | | 10 | | Probability | Spring Term
Yr10 | Understand
and use set
notation | Complete a probability tree diagram for dependent events understanding replacement and non replacement | Record
outcomes of
events in a
Venn
Diagram | Draw a
frequency
tree based on
given
information
and use this
to find
probability
and expected
outcome | Understand and use
P(A and B) = P(A) x P(B)
for independent events | | | 11 | | Multiplicative reasoning | | Use
calculators to
explore
exponential
growth and
decay | Use graphs
to calculate
measures
including unit
price, average
speed,
distance, time,
acceleration | Convert
between
area
measures
(e.g. mm² to
cm², cm² to
m², and vice
versa) | |----------------|---------------|--|---------------------|---|---|---| | 12 | | Similarity and congruence in 2D and 3D | | Begin to
use
congruency
to solve
simple
problems in
triangles and
quadrilaterals | Use
similarity to
solve
problems in
2D shapes | Find the
scale factor
of similar
shapes
where the
scale factor
is a fraction | | 40 | а | Graphs of trigonometric functions | | | | | | 13 | b | Further trigonometry | | | | | | test
week | 25th
Feb | | | | | | | purple
week | 11th
March | | | | | | | 14 | a | Collecting data | Summer Term
Yr10 | Know the
definition of
random
sampling | Write questionnaire questions to eliminate bias, on timing and location of survey to ensure sample is representative | | Extend to simple compound measures (e.g. convert 2 m/s to Use the information given about the length of sides and sizes of angles to determine whether triangles are congruent, or similar conversions of km/hr) Estimate Use simple examples of relationship enlargement and areas and simple shapes and solids volumes of between conversions Understand and use Write lengths, areas and volumes of two shapes as ratios in simplest form compound measures (density, speed, pressure) | | b | Cumulative frequency, box plots and histograms | Construct
cumulative
frequency
tables | Interpret
box plots to
find median,
quartiles,
range and
interquartile
range and
draw
conclusions | Calculate
the
interquartile
range of a
set of
discrete data | | | |----|---|--|--|---|---|--|------------------------------------| | 15 | | Quadratics, expanding more than two brackets, sketching graphs, graphs of circles, cubes and quadratics | Solve
linear/linear
simultaneous
equations
graphically | | | | | | 16 | а | Circle theorems | | | | | | | 10 | b | Circle geometry | | | | | _ | | 17 | | Changing the subject of formulae (more complex), algebraic fractions, solving equations arising from algebraic fractions, rationalising surds, proof | Multiply
and simplify
algebraic
fractions | Given f(x)
find f(a) where
a is a integer
or fraction | Given f(x)
where f(x) is
a linear
function, find
a when f(a) =
whole
number | In simple cases, change the subject of the formula, e.g. make c the subject of the formula from y = mx + c | | | 18 | | Vectors and geometric proof | Express
points as
position
vectors | Add and
Subtract
column
vectors | Represent
column
vectors
graphically | Calculate
scalar
multiples of
column
vectors | Understand and use vector notation | Year 11 – Foundation | | 19 | a | Similarity and congruence in 2D | | Begin to use congruency to solve simple problems in triangles and quadrilaterals | Use
similarity to
solve
problems
in 2D
shapes | Find the
scale factor
of similar
shapes
where the
scale factor
is a fraction | Use simple examples of the relationship between enlargement and areas and volumes of simple shapes and solids | Use the information given about the length of sides and sizes of angles to determine whether triangles are congruent, or similar | Write lengths, areas and volumes of two shapes as ratios in simplest form | |--|----|---|--|------------------|--|--|--|---|--|---| | | | b | Vectors | Autumn Term Yr11 | Express
points as
position
vectors | Add and
Subtract
column
vectors | Represent
column
vectors
graphically | Calculate
scalar
multiples of
column
vectors | Understand
and use
vector
notation | | | | 20 | | Rearranging equations, graphs of cubic and reciprocal functions and simultaneous equations | | In simple cases, change the subject of the formula, e.g. make c the subject of the formula from y = mx + c | Generate
points and
plot graphs
of simple
cubic
functions,
then more
general
functions | Solve
linear/linear
simultaneous
equations
graphically | | | | ### Year 11 – Higher | 19 | a | Reciprocal and exponential graphs; Gradient and area under graphs | Autumn Term
Yr11 | Use expressions of the form y α x | Use expressions of the form y α 1/x | Use
algebraic
methods
to solve
problems
involving
variables
in direct
proportion | |----|---|---|---------------------|--|--|--| | | b | Direct and inverse proportion | | | | |